Dear Colleagues,

Since 2008 Biomedical Reviews has gone online. And now its volume 20 can be viewed on your desktop, and papers printed freely and distributed globally.

The Bulgarian Society for Cell Biology (BGSCB) aims at promoting the advances of science, research and teaching in the field of cell biology. We are pleased to broadcast that BGSCB was elected a Full Member of the International Federation for Cell Biology (IFCB), as well as Dr George Chaldakov an Editor of the Editorial Board of Cell Biology International, a journal published on behalf of the IFCB. Accordingly, we would like to express our sincere thanks to Professor Denys N. Wheatley, the President of IFCB, for his support to our activities.

I want to also express my acknowledgments to all colleagues involved in the production of Biomedical Reviews (BMR), those who have volunteered to devote time and creative efforts, bringing their years of experience in learning and doing science to help guide the publication activity of BGSCB. One more example of such a collaboration was the launching of a new international journal, Adipobiology, as well as the organization of the 2nd International Symposium on Adipobiology and Adipopharmacology (ISAA) held on 23-25 October 2009 in Varna, Bulgaria (see Meeting Report on pages 1–5).

Starting in this volume, we, instead of showing the Program of lectures delivered at the Biomedical Forum, introduce a section named Continuing Medical Education (CME). Therein, we present in brief current “scaffolding”—a metaphor that describes the way a teacher provides assistance to the students during the learning process in much the same way that construction scaffolding serves as a temporary support until the building can stand on its own, which, in terms of neurocognition, is conceptualized as scaffolding theory of aging and cognition (2,3).

George N. Chaldakov

IN THE HEART OF ADIPOBIOLOGY: CARDIOMETABOLIC DISEASE


George N. Chaldakov1, Marco Fiore2, Anton B. Tonchev1, Gorana Rančić3, Mariyana G. Hristova4, Neşe Tunçel5, Dimitar D. Kostov6, Vesselka Nikolova7, Vladmila Bojanić8, and Luigi Aloe2

1Division of Cell Biology, Medical University, Varna, Bulgaria, 2Institute of Neurobiology and Molecular Medicine, National Research Council-European Brain-Research Institute, Rome, Italy, 3Department of Histology and Embryology, Niš University Medical Faculty, Niš, Serbia, 4Department of Endocrinology, Private Policlinic, Varna, Bulgaria, 5Department of Physiology, Medical Faculty, Eskişehir Osmangazi University, Eskişehir, Turkey, 6Department of Internal Medicine, University St Marina Hospital, Varna, Bulgaria, 7Intensive Cardiology Unit, University St Marina Hospital, Varna, Bulgaria, and 8Department of Pathophysiology, Niš University Medical Faculty, Niš, Serbia

Published on 1 December 1994 issue of Nature (2), the Jeffrey Friedman’s discovery “gave leptin in the beginning” of the endocrine saga of adipose tissue. Onwards, studies on this tissue have enjoyed an explosive growth that conceptualized a novel field of research, adipobiology (3). Arguably, in the heart of adipobiology and adipopharmacology are studies focusing on the pathogenesis, prevention and therapy of cardiometabolic diseases (CMD) including atherosclerosis, hypertension, obesity, type 2 diabetes, metabolic syndrome (global cardiometabolic risk), and lipodystrophies.

The 2nd International Symposium on Adipobiology and Adipopharmacology (ISAA) was organized by the Bulgarian Society for Cell Biology. Scientists from 15 countries presented 34 state-of-the-science (SOS) lectures.

Gema Frühbeck (Pamplona, Spain) highlighted the significance of adipokines represented by a large number of signaling proteins, e.g. pro- and anti-inflammatory interleukins, also leptin, adiponectin, resistin, tumor necrosis factor-α, renin, angiotensin II, and the “newcomers” retinol-binding protein-4, angiopoietin-like protein-2 (Angpl-2) and Angpl-4 (fasting-induced adipose factor), visfatin, vaspin, pigment epithelium-derived factor, apelin, chemerin, adrenomedullin,
lipocalin-2, and nerve growth factor (NGF) (4). She also introduced caveolins and aquaporin-7 (AQP-7) into the pathogenesis of CMD.

Caroline Pond (Milton Keynes, UK) presented her SOS on paracrine interactions between perinodal white adipose tissue and lymph nodes. She demonstrated that adipocytes associated with lymphoid structures are specialised to supply fatty acids, and possibly other precursors, to lymphoid cells. Such mechanisms emancipate the immune system from fluctuations in the composition and quantity of dietary lipids and are particularly important during immune responses, when perinodal adipose tissue remote from the site of immune stimulation as well as that around the locally stimulated nodes are activated. Caroline Pond also provided evidence that defective perinodal adipose tissue may be central to Crohn’s disease (5).

Harold Sacks (Memphis, Tennessee, USA) presented results about paracrine secretion of adipokines by epicardial adipose tissue and its significance for cardiovascular disease (6). His talk as well as that of Caroline Pond stressed the relevance of adipotopography in pursuing a hidden Homo obesus (7), a phenotype of TOFI (thin outside, fat inside), a term coined initially by Jimmy Bell (Imperial College, Hammersmith Hospital, London, UK), to emphasize that we cannot not rely only on BMI and other “classical” anthropometric measurements when imaging techniques (ECHO, MRI, PET) currently are able to provide visual information on external (outside) and internal (inside) accumulation of adipose tissue.

Stuart Wood (Liverpool, UK) explained that adipose enlargement and adipocyte hypertrophy generate a hypoxic environment which trigger the secretion of proinflammatory adipokines which, in turn, may be further involved in the development of obesity and associated diseases (8).

The “ongoing story” of leptin (9) was described by: (i) Arieh Gertler (Rehovot, Israel) focusing on leptin receptor antagonists’ anti-inflammatory and anti-fibrotic potentials in autoimmune diseases and liver cirrhosis, also cachexia in can-
Adipocardiometabolic disease

cer and AIDS (10), (ii) Morris Karmazyn (London, Ontario, Canada) paving the molecular pathway of leptin-induced cardiomyocyte hypertrophy, demonstrating a significant activation of the RhoA/ROCK pathway and an increased polymerization of actin, showing that leptin receptor antagonists may improve heart function in experimental model of myocardial infarction (11), (iii) Jerzy Beltowski and Andrzej Marciniak (Lublin, Poland) presenting data of leptin’s thrombogenic infarction (11), (iii) Jerzy Beltowski and Andrzej Marciniak (Lublin, Poland) presenting data of leptin’s thrombogenic and atherogenic effect, revealing that leptin (a) increases thromboxane A2 formation (12), and (b) inhibits paraoxonase activity, thus enhancing protein homocysteinylatation - these events are prevented by (a) the PPAR-γ agonist rosiglitazone, and (b) a synthetic liver X receptor agonist, and (iv) Esin Gurel (Ankara, Turkey) showing leptin-induced changes in erythrocyte rheology after oxidative stress.

Johan Renes (Maastricht, The Netherlands) highlighted the present adipoproteome map, revealing that proteomic technologies are fascinating tools for the identification of new adipokines and organelle-specific proteins (13).

Mariyana Hristova (Varna, Bulgaria) presented ongoing results about their hypothesis of metabotropic potentials of NGF and brain-derived neurotrophic factor (BDNF) as related to CMD (14), reporting effects of the anti-diabetic drug metformin and nonsteroid anti-inflammatory drugs on serum NGF and BDNF levels in patients with mild and with advanced stage of metabolic syndrome. Yu Nofuji (Fukuoka, Japan) presented findings showing that physical activity altered serum BDNF levels (15) as well as appreciated the recent data of BDNF as a myokine, that is, a cytokine secreted by skeletal muscles (16). Marcia Hiriart’s (Mexico City, Mexico) pioneering data on NGF secretion by pancreatic beta cells (17) were extended in her SOS lecture on the involvement of peripancreatic adipose tissue in sucrose-induced metabolic syndrome in rats. Marco Fiore and Mauro Ceccenti (Rome, Italy) demonstrated that chronic prenatal exposure of mice to ethanol, but not red wine, causes memory deficit expressed by reduced presence of brain NGF, BDNF and choline acetyltransferase reactivity in the offspring (18).

Dragan Djuric (Belgrade, Serbia) focused on the role of folic acid and homocysteine, which is also “secreted” by adipose tissue (19), in coronary artery functions evaluated by coronary flow and oxidative stress biomarkers. Bilge Pehlivanoğlu (Ankara, Turkey) associated obesity with immune cell responses to stress. Hiroshi Yamamoto (Kanazawa, Japan) looked for the “enemies and friends within” the mechanisms of diabetic angiopathy. He portrayed the AGE-RAGE-esRAGE system, that is, advanced glycation end-products and their receptors, and an endogenous secreted splice variant coding for a decoy form of RAGE, respectively (20). Neşe Tunçel (Eskişehir, Turkey) implicated white- and brown adipose tissue-derived nitric oxide and associated mast cells in cold stress-mediated vascular contractility in rats (21), referring also to the recent challenge in brown adipobiology (22).

Sukhinder Cheema (St. John’s, Newfoundland, Canada) highlighted the paradigm of nutrition-related developmental programming as related to the prevention of CMD, showing that a maternal high-fat diet alters the lipid metabolism, including hepatic LDL receptor expression, of their adult male offspring (23). Vladmila Bojanić (Niš, Serbia) reviewed data showing the effects of placenta- and breast milk-derived leptin on mother’s and offspring’s health, the so-called leptin-mediated metabolic programming (see 10). Collectively, CMD prevention should start during in utero and suckling life of the human. Likewise, Harpal Buttar (Ottawa, Ontario, Canada) advocated that “prevention is better than cure”. There is an overwhelming evidence that the Mediterranean-type diets which are high in fibre, low in saturated fat and glycemic load are associated with the decreased prevalence of metabolic syndrome and diabetes mellitus as well as improved lipid homeostasis and reduced risk of CMD. Of note, Harpal Buttar mentioned recent data of Yuji Matsuzawa’s group demonstrating that smoking cessation is associated with increased plasma levels of adiponectin, an anti-atherogenic and anti-diabetic adipokine (24). Richelle McCullough (Winnipeg, Manitoba, Canada) presented findings demonstrating that flaxseed is an excellent source of alpha linolenic acid (ALA), which is stored in adipose tissue, and that dietary flaxseed inhibits cardiac arrhythmias and reduces atherosclerosis (25).

Gorana Rančić (Niš, Serbia) implicated adipose-pineal network in the chronobiology of CMD. Luigi Aloe and George Chaldakov raised a hypothesis of adipose tissue as a third brain (26) - this sophisticated tissue is a source of releasing factors, neuropeptides and neurotrophic factors, which play a pivotal role in lipid, glucose and energy homeostasis as well as learning, memory and other neural functions. This may open a novel field of research, neuroadipology, which may contribute to further study of the pathogenesis of CMD (26,27; for leptin’s neurotrophic action, see 10).

As we started this Report, “the adipose tissue in the human body is there for the best, the bad and the worse”. “The best”,
because adipose tissue produces (i) anti-obesity, anti-inflammatory and anti-atherogenic factors such as adiponectin, brain-derived-neurotrophic factor (BDNF), interleukin-10, IL-1 receptor antagonist, (ii) vascular relaxants such as adipose-derived relaxing factors, nitric oxide (NO), hydrogen sulfide (H₂S), and adiponectin, and (iii) neurotrophic factors such as NGF, BDNF, ciliary neurotrophic factor, leptin, and NPY and other neuropeptides. “The bad”, because adipose tissue produces pro-inflammatory factors such as tumor necrosis factor-α and various cytokines and chemokines with such an activity. “The worse”, because adipose tissue when (i) disappear resulting in lipodystrophies, and (ii) accumulate around vital organs in the human body leading to various cardiometabolic diseases.

Altogether, adipose tissue may be a crossroad of CMD and neurodegenerative diseases. Further progress in adipobiology and adipopharmacology holds much promise for understanding how to walk on that road. Finally, all participants broadcasted the signal of “SOS for Homo obesus”, to hopefully reach politicians and businessmen, and make them altruistic to science and human health.

ACKNOWLEDGEMENTS

We appreciate the financial support provided by GlaxoSmithKlein, Deta Maritime Ltd, Bulgarian Ministry of Education and Science, Novo Nordisk, Wörwag Pharma, Sanofi Aventis, Actavis Bulgaria, Berlin-Chemie/Menarini, Technostroi EOD, Sofia, Bulgaria, and the International Federation for Cell Biology as well as personal donations of Mr Georgi Georgiev (Varna, Bulgaria) and our colleague-friends Ion David (Bucharest, Romania), Wale Sulaiman (New Orleans, LA, USA), Iliyan Ivanov (New York, NY, USA) and Denis Kamberov (Florida, USA). The creative reading of the manuscript by Gema Frühbeck (Pamplona, Spain) is sincerely appreciated.

REFERENCES


